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PREFACE

Nathematics is such a vast and rapidly expanding field of study that
there are inevitably many important and fascinating aspects of the subject
which, though within the grasp of secondary schocl students, do not find a
Place in the curriculum simply because of 8 lack of time,

Many classes and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
vhose production is sponsored by the School Mathematics Study Group, is
designed to makc material for such study readily accessible in classroom
quantity.

Some of the pamphlets deal with materisl found in the regular curric-
ulum but in & more extensive or intensive manner or from a novel point of
view. Others desal with topics not usually found at all in the standard
curriculum. It is hoped that these pamphlets will find use in classrooms
in at least two ways. Some of the pauphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with a treatment of a
topic different from the treatment in the regular text of the clsss. In
all cases, the pamphlets are designed to promote the enjoyment of studying
mathematics, |

Prepared under the supervision of the Panel on Supplementary Publicstions
of the School Mathematics Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Messachusetts
Professor Jean M. Calloway, Kalamszoo College, Kalamazoo, Michigan

Mr. Ronald J. Clark, St. Paul's School, Concord, New Hampshire
Professor Roy Dubisch, University of Washington, Seattle, wWashington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Cklghoma City, Okla.
Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvsnia
Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls
Mr. Henry W. Syer, Kent School, Kent, Connecticut
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THE SYSTEM OF VECTORS

Introduction: To the student

We hope you will find the material in this pamphlet
Initeresting, stimulating and rewarding. You will
experience little difficulty in understanding the
concept of a vec or even though your preparation in
Mathematics may not be very extensive but at the
same time a reasonable mastery of the subject will
prepare you for more advanced work. Of the many new
ideas you will encounter in these pages we should
like to mention three which are of particular inter-
est. First, we hope you will be impressed with the
solution of Geometry problems by vector methods.
Also, this material has tremendous application to
problems In Physics and this is demonstrated in the
text, although you should be reminded that this
sectlon requires a knowledge of some elementary Trig-
onometry. Finally, should try yourself out on the
last sectlon which 1s concerned with Vectors as a
Formal System.
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THE SYSTEM OF VECTORS

1. Directed line Segments .

It is assumed in this pamphlet that you are familiar w;&&ﬂ__
Plane geometry. We review some of the symbols of geometry. AB
means the line which contains the distinct points A and B .
Kg-.means the ray whose vertex is A and which also contains the
point B . [AB| means the distance from A to B (and from
B to A). It is a positive real number if A and B are
distinct. It i1s zero if A and B are the same.

We need one further idea which 1s not ordinarily covered in
geometry-~that of parallel rays. Rays are said to be parallel
if they lie on lines which are either parallel or coinecident,
and if they are similarly sensed. Figure la shows typical
instances of rays which are parallel and of rays which are not
parallel, and is supposed to take the place of a formal defi-
nition.

D

D>

B A R C D

3

L {v¢]
I
ivv)

— — — —
rays AB and CD are rays AB and D are not

Parallel
g Figure la Parallel

~1




DEFINITION la. A line segment 1s said to be a directed
line segment if one of its endpoints is designated as
its initial point and the nther endpoint is designated
as 1ts terminal point. We use the symbol AB to
denote the directed line segment whose initial point

is A and whose terminsl point is B .

We say that directed line segments B and CD are
equivalent 1f it is true that their lengtns are the
same and also that the rays A_B'and Efam parallel.
We write AB = CD to denote the fact that AB and

Cb are equivalent.

Note: We consider that a single point can be both initial
and terminal point of the sane directed line segment and we
consider that all such directed line segments are equivalent to
one another.

A B C——— =D
"4 Ar_ﬂ__,__a-ra
C
B
A-//’ A
L
D L J
C—**‘*“——*‘-
D
B
AB = CD
Figure 1b

Figure 1b shows some pairs of equivalent directed line segments.
It uses the convention that the endpoint of a segment which has
an arrow is the terminal point of the segment, Notice that if

A, B, C, D are not collinear, then §§ < D if and only if

ABDC 18 a parallelogram. We need the fact that if AB s any
directed line segment and if C 1is any point, then there is cne
and only one point D such that AB =2 0 . Ve do not prove this
fact, but assume that it is known from the study of geometry.



DEFINITION 1lb., Let AE and CD be any two directed
line segments. Then by their sum AB + CD we mean
the directed line segment X s where X 1is the
unique point suci that BX % 55 .

We call the operation which assigns their sum to each
pair of directed line segments the addition operation
for directed line segments.

Figure 1lc shows some sums of directed line segments.

D
" X
C
A 8 A )
AC = AE + X " AX = AB + OB
B
; " 5
D
A
A - g ﬁﬂﬁﬁ'ﬁ
c
&X = CD + AB
Figure lc

Directed line segments can be added and multiplied by real
nunbers in a useful way. We give the formal definition of these

operations herc¢. Their properties are studied and applied
throughout the rest of the chapter.




DEFINITION. Let AE be any directed line segment
and let r be any real number. Then the product
rKE is the directed line segment Ei ; wWhere X
is determined as follows:

(1) If r >0, then X 4is on the ray AB
and JAX] = r|AB] .

(2) If r <0, then X 18 on the ray
opposite to AB and |AX] = -rjaB| .

(3) If »r=0 , then X = A .

(4} If B=A , then X = A .,

Figure 1d shows some typilcal products.

5 5 & 2 8 $

O AB = RA
1 AB = AB
2 AB = A0
-% AB = AD
-1 AB = AE
-2 AB = AF
Figure 1d

It is useflul tc know that ir equivalent directed line
segments are added to equlvalent directed line segments the sums
are equivalent, and that if equivalent directed line segments
are multiplied by the same number the products are equivalent.

We now state these facts formally as theorems and illustrate them.



R S AR LA Patd B S ¥ VPG U U W AR e S reya et

Lot e RN b ca T U e e . e T T e e e AT Y ———"

ol

\Jt

Figure le shows a typical instance of this theorem., It is
equivalent to the fact that i{f ABRCD 4is a parallelogram and if
XYDB 1is a parallelogram, then AXYC is a parallelogram. This
is a special case of a famous theorem of geometry known as
Desargues' Thecorem.,

THEOREM 1b, If AB = CD and if r 4is any real number,
- .
then rAB = rlD .

A .-
[

il —t @ e

AX =rAB; CY¥ =1rCD; AX=CY .

Figure 1f

Figure 1f 1llustrates a case in which A, B, C, D are not
collinear. It also illustrates the geometric version of the
statement, that if ABDC 1is a parallelogram and if AX = CY
then AXYC 1s a parallelogram.

1
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Exercises 1

A and 3 are distinct points. List a8l1l1 the directed line
segments they determine,

A, B arnd C are distinct points. List all the directed
line segments t.ey determine,

A, B, C and D are vertices of a parallelogram. List all
the directed line segments they determine, and indicate
which pairs are equivalent.

A B

(d) ? + AB = AA .

(e) (AB + BC) = CA = 7

(f) BR + (ARG + &B) = ¢ A c
(g) ? + AC = CB .

A, B and X are collinear points. Find r such that

AX = rAB
and s such that
BEX = sEA ,
if
(a) is the midpoint of segment AB .
(b) is the midpoint of segment RAX .

(c)
(d)
(e)
(£)

is the midpeoint of segment EX .

i3 two-thirds of the way from A to B .
is two-thirds of the way from A to X .
is two-thirds of the way from B to X .

Eoadi e B - ¢ ¢ I

bl ' ¥
')}

s

2}{:
Y
' B



6. In triangle ABC , X 1is the midpoint of AC and Y is
the midpoint of segment EX .

(a) BX = BA + ?AC . B8
(b) EX = ?BY .

(¢) EX = BC + 2

(d) BX = BC +-% ? v
(e) BY = 7BX .

(£} BY = 2(Bk + AX) .

(g) B = ?BY + XC .

2. Applications to Geometry.

It 1s pessible to use directed line segments to prove
theorems of geometry. These proofs are based on algebraic
properties of directed line segments. They are quite different
from proofs usually given in geometry which appeal to such
matters as congruent triangles and the like.

We state and illustrate the necessary algebraic properties

of directed line segments here. We prove these statements in
Section 3.

I. Commutative Law:

A5+ D =TD+ &8 .

Figure 2a shows an instance of the commutative law for
addition in which the directed line segments ﬁS and EB have
a commeon initial point.

AsC B
AB + CD = CD + AB = AX

Figure 2a




IXI. As ociastive Law:
i P J— -l enle —
AB + (CD + EF) = (AB + CD) + EF .

anmlin. — i
Figure 2b shows sums AB + (CD + EF) in which B and C
are the same and D and E are the same.

D= E

Figure 20

II1. Existence of Zero Elements.

Every directed line segment of the type BA is a

Zzero element because PQ + Kﬁ = PQ .

IV. Existence of Additive Inverses.

i

BA 1s the additive inverse of Kﬁ , because
AB + BA = RA .
We use a negative sign to denote the additive inverse of a

directed line segment AB » and write - AB for EE . We also
write ?E - KE for ?5 + ?ﬁ .

This operation cof subtraction is illustrated in Figure 2c.

A€ = AB + BC ¢
el e 3 —
AC - AB = BC
-t — —
AC + BA = BC
A 8

Figure 2c

-l

T
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V. The Associative Law.
r(sAB) = (rs)AB .

b O

Figure 24
- $(4KB) = - }(RC) = D
(-%4)AB=-2i8= 7.

Figure 2d shows an instance of the associative law in which
x‘-"E,S’&-

VI. The Distridbutive Laws:
r(AB + CD) = raAB + rCD ,
(r + s)Kﬁ = rAB + SAB .

AQ = 4B, TP = 4CD , AP = LAD
AP = AQ + Q@
4AD = 4KB + 4CD

4(RB + CD) = 4AB + 4CD

=C . Q
Figure 2e

Figure 2e illustrates the first of the two distributive laws
for r = 4 ,
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Figure 2f
Figure 2f illustrates the distributive laws for r = 4 ,

8 = -2 e el -l
AD = AC - DC
2AE = AC + CD

—

(4 + (-2))AB = 4AB + (-2)AB

The combined effect of all these laws can be summed up
briefly as follows:

Directed line segments obey the familiar rules
of algebra with respect to addition, subtraction,
and multiplication by real numbers.

We now show how this algebra of directed line segments can be
applied to proving theorems of geometry.

Example 2a. Show that the mldpoints of the sides of any
quadrilateral sare vertices of a parallelogram.

Proof: ILet ABCD be the quadrilateral (see Figure 2g)

‘ T
Figure 2g D

and let X, ¥, Z, T be the midpoints of its sides as indicated.
It 1s sufficlent to show that XY « ™ since this 1mplies'both
that XY || T2 and that |xy| = |T2| .

i

We have XY = %ﬁﬁ + %EE

and T‘Z--,EAD+—DC.
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Since B¢ = DA + A+ EE » We also have
™ i~%§5 + %(EK + AB + BC)

- %Eﬁ - %EB + %KE + %EE
- %55 + %EE .
P

This shows that XY = TX .

Example 2b. Prove that the diagonals of a parallelogram
bisect each other.

Solution: ILet ABCD be the parallelogram (see Figure 2h).

D C

Figure 2h

Then the midpoint of AT 4s the endpoint of #(AB + E0) . The
midpoint of TE 1is the endpoint of AB + #(BR + ED) whicn

—  1-=  ]oa 1= 1
equals AB - 3AB + 3AD or zAB + -§A—13 . We show that this is the

—

same as %53 + %EE . Since ABCD is a parallelogram, Kﬁ = BC ,
80 the last sum is certainly equivalent to %ﬁﬁ +-%_. . We
conclude that these directed line segments are the same by
noticing that in addition to being equivalent they also have the

same initial point.

Example 2c. Prove that the medians of a triangle meet in
a point which trisects each of them.

L, B



Solution: Let ABC be the triargle (see Figure 2i).

Y
Figure 21

Iet X, ¥, 2 be the midpoints of its sides. Then, the point two-
thirds the way from A to X 1s the endpoint %(ﬁ + %B_E) .
The point two-thirds the way from B to Y 1s the endpoint of

B+ %(ﬁ + %KF
The point two-thirds the way from C to Z is the endpoint of

T\?+§-(ﬁ+%§§

We show that these three directed line segments are one and the
same. We use the fact that BC = BA + AC .

Then the first is equal to

g—(ﬁ + %ﬁ + %EE)

which is equal to %(K‘E - §ﬁ+ 'E'
or by .k

The second is equal to ﬁ - g-ﬁ + %ﬁ which also equals
1 1
3-1'5 + gﬁ .

The third is equal to KE - %m + %ﬁ which also equé.ls

P

-

8

‘,"2;;
T
g
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Example 2d. Prove that the line which Joins one vertex of
a parallelogram to the midpoint of an opposite side is trisected
by a diagonal. Prove also that 1t trisects this diagonal.

Solution: ILet ABCD be the parallelogram (see Figure 2J).
Let A be the given vertex and let X be the midpoint of TD .

Figure 2]

We are to show that the point two-thirds of the way from A %o
X 1s the same as the point two-thirds of the way from D to B .

The first point is the.endpoint of
g{ﬁg +'%§E)
or
25 4 3%
The second point is the endpoint of
AD + £(DR + AB)
This latter equals
m - 25 + 21

1=  2=a
5AD + %AB .

Since KB is equivalent to B we see that these two
directed line segments are equivalent; that they are in fact the
same follows from the additional fact that they have the same
initisl point.
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1.

4,

Exercises 2
If ABCD 1s a parallelogram, express joj] .
(a) 1in terms of DG and TA . 0 c
— menlin

(b) in tesms of IC and CB .

(¢} in terms of AB and E .

(d) in terms of AB and AD .

(e) 4in terms of BA and B . 4 8

If A and B are distinct peints, identify the set of all
terminal points of the directed line segments of the form
t AB for which

(a) t>0. (e) t21.

(b) 0t <1 . (d) -1 gt<1.

If A, B, C are non-collinear points, find the set of all
terminal points of directed line segments of the form

r AB + s AC '

for which

(a) =0, s arbitrary.

(b) s =0, r arbitrary.

(e) 0<rgl, s arbitrary.

(&) © <8 <1, r arbitrary.

(¢) 0gr<1, 081,

(f} r =1, s arbitrary.

(g) 8 =1, r arbitrary.
*(h) r+s8 =1,
*(i) I‘ S-l.
(5 -g+§--l.

*(k) 6r + 7s = 8 ,
*(1) ar + bs + ¢ = 0 , where 8, b, ¢ are real numbers
and where not both 8 and Db are zero.

Show by an example that subtraction of directed line
segments

(a) 18 not commutative,
(v) 4is not associative.

b
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5. In the_rollcwins figure

A H (]

ABCD , EOGB , and HDFO are each parallelograms. Prove
that their respective diagonals AC , EG , ¥F , extended
if necessary, meet in a single point X .

6. ABCD 4s a parallelogram and P, Q, R, S are the midpoints
of the sides, ‘

A P

/77

D R C

For each of the following directed line segments, find an
equivalent directed line segment of the form r 53 + 8 0P .

(a) OB . (e) DB .
(b) o€ . (£) i .
(¢) ob. (g) @R .
(a) Gk . (h) BB .

7. Show that the four diagonals of a parallelepiped bisect
one another.

&S
.-t
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3 Vectors and Scalars: Components.

When we define, as in Section 1, operations for the set of
directed line segments, this set will be called a set of veetors.
The real numbers whieh we use as multipliers for these vectors
will be called scalars.

Neither the nature of the directed segment nor that of the
real number has been changed. They are now, however, all seen as
parts of a larger entity, a vector space. It is relative to this
new system that they are being renamed. From now on we shall call
a directed line segment a vector. We shall call a real number a
scalar if and when 1t multiplies a vector.

We are goling to discuss equivalence of vectors, addition of
vectors and multiplication of veetors by scalars in terms of
coordiantec. The following thecorem 1s the basie tool in this
discussion.

THEOREM 3a. ILet A, B, C, D have respective coordinates
AB = CD
if and only if

b, - 8

1 8 =9 -¢y ., Py -8y =dy -cy

Proof: Figure 3a illustrates Theorem 3a.

Y Y
Bi2A) )
A 4,3) 2 /
2 (A2
All2) [ | e,
i X
ci3,n . o] | 2
P2
Figure 3a
E§ is equivalent to D AE 1s not equivalent to EB
2-1=4 -3 SR -244 -1

y - 2=3 -1

JJ» »:
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We give only a8 few indications of the proof of this theorem.
Ir bl - & = dl - Cy and 1if b2 - 8, = d2 - ¢,

then

(b1 - al)2 + (b2 - ag)2 = (dl - cl)2 + (d2 - °2)2

and

provided that
b, -8, £0 and d; -c; £ O .

We conclude that |AB] = |CD| and that ‘A_B.! |¢B~. This
makes plausible the fact that if the given equations hold then
AS # D . It doesn't completely prove this (we need AB ] &)
and it doesn't contribute at all to the proof of the converse.

Corollary. If 0P 1is the vector equivalent to AE , Where
0 4is the origin, then P has coordinates (bl -8, , by - ae) .

DEFINITION 3a. If A 1s the point (al,ae) and B is
the point (bl’be) , we call the number bl - ay the
i—camgonent'of A8 , the number by - a, the y-component
of AB .

In most discussions of vectors the initial and terminal
points of the vectors are not as important as their x and
y-components. We shall therefore often specif& a vector by
giving its x and y component. We use square brackets [ , ]
to do this; [p,q] means any vector whose x-component is p and
whose y-component is q . We shall sometimes denote vectors by
single letters, with an arrow above, like 2 , when the specific
endpoints are not important. We also write 'K =3 tq assert
that two vectors are equivalent. The equal sign shoulSéproperly
connect not the vectors themselves but their components. Thus
Theorem 3a can be restated as follows:

ol
T2




ol

If X is (xl,x2] and ¥ is [yl,y2] , then

-l * i

X=Y
if and only if
xl = yl and xa = ya .

We use the symbol |X| to dencte the length of X . We have
L e 2
t[xlﬁxel‘ - xl + xe .

We turn now to the addition and multiplication operations
for vectors, show how they can be effected in terms of components,
and prove the basic algebraic laws stated for them in Section 2.

THEOREM 3b. If X 1s [x;,x,] andif ¥ 1s [y ,y,]
then X +¥ 18 [(x; + x3) , (y; +¥p)]) .

Proof: By definition of addition for vectors (see Figure 3b)

Z(xy + ¥4 X5 + ¥5) .

Yo' X(x;,%)

o]

Figure 30

07 is OX + 3% if and only 1if XZ = OY « According to
Theorem 3a, this will be so if and only if the point Z is

(xl +¥; » X5 + ¥,) . It follows that the components of X+ ¥
are xl + ¥y and X, + y2 .

2.
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Corollary. Addition of vectors is commutative.

aln

ol -l ud,
X+¥=Y+X.

Corollary. Addition of vectors is associative.
(?4—?) +Z X+ (¥ +2) .

Corollary. There is 8 zero vector [0,0] .

Corollary. Every vector X has an additive inverse - .
ir X is [xl,xel , then X 1is [-xl,-xel .

THEOREM 3c. If R is (x4,x,] , then rX 1is [rx;,rx,)

Proof: Let Y be the point (rxl,rxe) » (see Figure 3c).

e ——

Y(rx,.na)

Figure 3¢

Then

l0¥| =a/(rx)2 + (rx3)% = Irln/hy® + %2 = 2] |ox] .

Also 0, X, Y are collinear, since they are on the line whose
equation is XX - xly = 0 . We must show that the ray C_)i is

parallel to the ray oY to complete our proof. We omit this
part of the proof,




Corollary. Multiplication by scalars is assocciative.
r{s¥) = (rs)X .
Corollary. Multiplication.by scalars obeys the
distributive laws.
r(X +¥) = rX + ¥

(r + 8)X = ©X + sX .
Corollary. (-1)X = -X .

Corollary. If X is [xl,xg} and if ¥ is [yl,yel
then rX + sY is (rxl + 8y, , Xy + syE} .

DEFINITION 3b. Non-zero vectors X and ¥ are said to
be parallel if and only if the directed line segments
0X and oY equivalent to them are colline=r,

> -

Figure 3¢

THEOREM 3d. Non-zero vectors X and Y are parallel if and
only ir
~ -
¥ =rX

for some non-zer rveal number r .

21
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ol -lin
Proof: Let X be [xl,x2} and Y oe [yl,yel ; let X
te the point (xl,xe) and Y be the point (yl,ye) .  Then

OX *X ,0¢«Y. Then X || ¥ if and only if 0, X, and ¥
are colilinear. But

OX = rOY
if and only if
Xy =

Xo = T¥p

and this holds if and only if 0, X, Y are collinear.

-—— -l
X X 7
4 1(6,9) - 7(6,9)
3.2 Y
/.r‘v : Loty (3,1)

-

Xiy

} e

X not parallel to vy
Figure 3d

THEOREM 3e. Let X and ¥ be any pair of non-zero, non-parallel
vectors. Then for each vector 2 there are numbers r and

8 such that

ol - il
Z =X + gy .

_ wln =
Proof: let X, ¥, Z be {xl’x2] P {yl:ye} ) {21122]
respectively. We are to show that the equations for r , s
Z; = rXy + 8y,
Z, = IX, + Sy,

€}
</
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have a unique solution (r,s) . Since X 1is not parallel to ¥,
it follows from Thecrem 3d that

X1¥p - VX £ 0 .

Corollary. If rX + s¥ = 0 (where O 1s a zero vector),
and 'i and '? are non-zero, non-parallel vectors, then

r=85=0.

DEFINITION 3c. Any two non-zero, non-parallel vectors
in the plane could serve as & basis for all the vectors
of the plane.

T{7,-7)

Figure 3e



Figure 3e shows two base vectors X and Y and vectors
02 and o7 expressed in the form rX + sY

{1,0] and [0,1] form a base which is frequently used.

The vector [1,0] 4is denoted by 1 and the vector [0,1] 1is
denoted by T .

THEOREM 3f. X = ai + b§ 4f and only if X 1is [a,b] and
(a,b) 1s the point P for which

X = OF .

Proof: If X is {a,b] , then, since

[a,b] = a{1,0] + b[0,1]
it follows that

= aliy i
X=al +Dbj.
If X +al + b3, then

X = al1,0] + b[0,1] = [a,b] .

Y
021 (3,2)
(Q_i}' X= 3?+2'j.
|
a0 (30) X

Figure 3f

Figure 3f shows an example of a vector x expressed as a
sum 31 + EJ .

0o
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Exercises 3

1. If A, B, and C "are respectively (1,2) , (4,3), (6,1)
find X so that '

(a) AB = CX . (c) ¥A =ThB.
(v) X = CB . (d) TR = 5 .
2. Same as Problem 1, if A, B, C are respectively (-1,2),

(%,-3) , (-6,-1) .

3. Find the components of

(a) [3,2] + [4,1] . (e} -1[5,6] .

(v) ([3,-2] + [-%,1] . (r) -[5,6] .

(e} 4[5,6] . (g) 3[4,1] + 2[{-1,3]
(d) -4[5,6] . (h) 3[%,1] - 2[-1,3] .

4. Determine x and y so that

(a) x[3,-1] + y[3,1] = [5,6]
(v) x[3,2] + y[2,3] = [1,2]
(c) x(3,2] + Y{-2,31 = [5,6]
(a) x[3,2] + y[6,4] = [-3,-2] (infinitely many solutions).

5. Determine a2 and b so that

(a) [3,1] = at + b7 . (¢) 1 =a[-3,1] + b[1,-3]
(b) [1,-3] = ai + b3 . (d) ¥ = a[-3,1] + b[1,-3]

6. Determine a and b so that

31 - 23 = a(31 + 47) + v(s1 + 37) .

4, 1Inner Product.

Our algebra of vectors does not yet include multiplication
of one vector by another. We now define such a product.

We first say what we mean by the angle between two vectors
X and Y which do not necessarily have a commen initial point.

30
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DEFINITION 4a. let X and ¥ be any non-zero vectors
and let OX and OY be vectors whose initial point is
the origin O and which are equivalent respectively to
X and 'f . Then by the angle between -}? and "? we
mean the angle between Ei and OY .

DEFINITION 4b. Iet X and Y be any vectors. Then

==

the inner product of X and '§ is the real number

|X] |¥] cos 6

where |X| is the length X , |¥| 4s the length of
and 8 1s the angle between X and Y . (1f X or
is a zero vector then 6 is not def:: d. We interpret
the definitions to mean that the inncs product is zero,
in this case.)

Y
-
Y

The inner product has important properties. Before we
investigate these properties of the inner product we relate the
inner product to a familiar mathematical relation--the law of
cosines.

If our given vectors X and Y are not parallel they
determine & triangle OXY , where O is the origin and where
X and Y are endpoints of the vectors 5§ and 0OY
respectively equivalent to X and Y . We can find at least
one earlier appearance of the inner product by applying the law °
of cosines to the triangle. It asserts (Figure &4a)

-
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XY
X
Y
-e §
5 X
a
Figure La
IX¥1% = 10%12 + |5¥|2 - 2|B%| - |5¥] cos 6
whence

[0X] - |O¥] cos § = [oX|© + '3?[ il P54

Thus the expression we have called the "inner product” is
suggested by the law of cosines.

We sometimes denote this product by the symbols i'-'§
(read "X dot ¥") and sometimes call it the "dot product.”

Usually, in algebra, a multiplication operation for a set
of objJects assigns a member of this set to each pair of its
members. The inner product is not an operation of this type.
It does not assign a vector to a pair of vectors but rather it
assigns a real number to each pair of vectors.

Example 3a. Evaluate X -7 if l'fl =2, ﬁ?[ = 3 , and
(8) e=0, (b) o=145°, (c) =9, (d) & = 180° .

3
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Solution:
(a) Y-?-2-3¢cso°-2-3-1-6.
(1:)'}?--‘?-2-3&5&5(’-2-3-'\%—-3»\/?. '
(c) R.¥=2.3¢co890%°=2.3.0=0,
(@) X .¥=2.3co818°=2.3. (-1) = -6 .

The inner product has many applications. One of these 1s a test
for perpendicularity.

THEQREM _4_§._. If X and '? are non-zero vectors, then they are
perpendicular if and only if

-l

X - ¥Y=0.

Proof: According to the definition of inner product

e

x-'f-t'f{-f?]cose .

This product of real numbers is zero if and only if one of its
factors is zero. Since X and ? are non-zero vectors, the
numbers |X| and |¥| are not zero. Therefore the product is
zero if and only if cos 8§ = O , which is the case if and only
1f X and Y are perpendicular.

The following theorem supplies a useful formula for the
inner product of vectors.

THEOREM 4b. If X = [x),x,], ¥ = [y ,y,]
then

Proof: According to the law of cosines (see Figure Lb)

?n —_
2., .
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Figure 4b

{OX| - |O¥] cos @ =

1012 + Jox}°  IX¥|°
ol

2 2 2

2 2
1 t X vV +t ¥ - (% - ¥)

X

= lel + x2y2 .

Since, by definition, the left member of this equation is

-l

X - ? , our theorem is proved.

Example &b, If X 1s [3,4] and ¥ s [5,2] , find
¥-¥.

Solution: ¥ - ¥ =3 .5+ 4 .2=23.

Example 4¢c. If X s [3,7] and ¥ is [-7,3] , show
that X and Y are perpendicular.

Soclution: X .¥=3(-7)+7-3=0.

The conclusion follows from Theorem 4a, and the fact that ?(
and Y are non-zero.

3
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A useful fact about inner products is that they have some of
the algebraic properties of products of numbers. The following
theorem gives one such common property.

THEOREM 4. If X, ¥, Z are any vectors, then
X - FT+2) =X .Y+ .3
and (tX) - T =t(X .79 .
wln alin e
Proof: Let X = [xl,,xe] 2 Y = [}’1,3"2] » Z = {21122]
-l -
Then X - (Y + -Z-) ™= {xlsxel . [Yl + zl » Ye + 22]
= x3(yy +29) + x5(y, + 2,)
= XYy O XQ¥p t X3y + X2,
- -l -l =l
=X - Y¥Y+X 2
(tX). c Y = [txlxt‘xel ¢ [yl.OYE]
= txlyl + t;xay2

=t(X - %) .

Corollary. X . (a¥ + 52) = a(X - ¥) + b(X . 2) .

In certain applications of vectors to physics the notion of
8 component of a vector in the direction of another vector is
important. We now define this concept.

DEFINITION L4e. Let X be any non-zero vector and let ¥
be any vector. Then the component of ? in the direction
of X s the number given by each of the following equal
expressions:

X . ?_ [X] - [¥] cos 8
IR IX|

e
= |Y| cos @

NOTE: The component of ¥ in the direction of X can be
described geometrically (see Figure ic),

[
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Figure lc

In both parts of the figure, P 4is the foot of the perpen-
dicular from the initial point of ¥ to the line of X , and Q
48 the foot of the perpendicular from the terminal point of Y
to this line. In the first part the component of ¥ in the
direction of X turns out to be the distance from P to Q.
In the second part this component turns out to be the negative
of the distance from P to Q.

The inner product is used frequently in applications of
vectors to physics. For the moment we consider inner products
from a purely mathematical standpoint.

Example 4d. Let X be any vector parallel to the positive
x-axis, let ¥ be any vector parallel to the positive y-axis
and let Z be the vector [p,q] . Show that p and q are the
components of 'E in the direction of X and '? respectively.

Solution:

088 S
-+ q
80 . p=(cos & ). «/pE + qE .

] 2 2
Since |Z] =A/p° + q° , we conclude that

-l
p= |Z| cos &

o | ‘ !‘3 {(\

T

P ’

A

:fi

¥

a b - ki APATE },7
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The angle between 2 and the y-axis is -0 -
Consequently the component of 'E in the direction of '§ is

cas(% -8 ) \/pa + qa .

Since coa(;:; - & ) = sing and since sin g = q ’
pe + qa
we conclude that this component is, in fact,
_J—e - 22 +q%,0r q.
P +4Q

Vectors in Three Dimensions,

Much of our discussion of vectors in the plane can be
carried over to three dimensions with only minor modifications.

The portions about directed line segments require no modifi-
cation, Hheg we come to coordinates and components, the
conclusions are as follows:

1. The components of a vector in three dirensional space
are an ordered triple {a,b,c] of real numbers.

2, Two vectors ([a,b,c] and (p,q,r] are equal if and
only 1f a=p , b=q and ¢ = r .

3. The addition of vectors {a,b,c] and [p,q,r] is
given by the rule

la,b,e] + [Pyl = [a+P, 0+q,c+r).
5. Scalar multiplication of vectors is given by the rule
r{a,b,c] = [ra,rd,rc] .

5. The unit base vectors associated with the coordinate
axes are

1 = [1,0,0]
-J-" {0,1,0]
* = [0,0,1] .




"
&

- N LGL S St LR LY ERR e e C e g e e e - - PR ORI SR * VN B ot ROl S -3 . hd N
I T A . . . M T N . M

RO

3e

Figure 4d shows these base vectors.

z
'
- y
T
T
X
- Figure &4d

The vector V = 41 + 83 + 8k 4s 1llustrated in

Figure %e.
4
|
|
f .
i - ‘ ‘
i v | |
| f !
| [ | '
| i
I i /
i 1 7
_________ v
V4
’
L
Figure ke

6. The inner product of V and W 1is still given by
V. W= |V]|W| cos 8
In component form, if V 1is [vl,ve,val and W

is [wl,we,wBI , then

V-.-WN= vlwl + vaw,‘, + v3w3 H

also iV -%12 + v22 + \732 .

Q - 38
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Exercises &
1. Pind X - ¥ 1r
(a) X=1,V¥ =7 (£) XR=2T + 3T, T= 4T .- 57T,
(b)) X=T ,¥=1 () X¥= -21 - 3T, ¥~ 4T+ 57,
(¢) X=7,F%=T (h) ¥=al + v, ¥=cT + a7 .
(d) X =3, ¥ =g (1) X=al+bv], T =X
() =T +T,¥=T-7T.() XT=al+v],Va=sL.
2. Find the angle between X and ¥ ir [X] =2, [¥] =3,
and X -V 1s
(a) o. (e) -4 .
(b) 1. () 5.
(e¢) -2. (g) 6.
(d) 3- (h) "6.
3. 1f % =37+ 47, determine a so that ¥ is perpendicular
to X, if ¥ is
(a) af + 43 . (¢) 41 + a7 .
(v) af - 47T, () at - 37 .
k. Find the angle between X and ¥ 1in each part of
Exercise 1 abcva,
5. If a® + be # O prove that al + bl 1s perpendicular to
¢l + dT 1if and only if &T + b3 4is parallel to -dT + el .
6. Find the component of ¥ 4in the direction of X if
(8) X=1,F¥=3T+47. (e) Xwals ], ¥=37T+4T.
() X=T,¥=3T+47.. () ¥=3T+47F, ¥=51+ 27 .
(¢) X=3T+ 4T, ¥=T. (g X=3T +4F, ¥=al + b,
(@) ¥=3T+43T,¥¢=T. (n) X=plT+qT, ¥=al+ T,
5. Applications of Vectors in Physics.
The notion of "force" is one of the important concepts of
physics. This is the abstraction which physicists have invented

to describe "pushes" and "pulls" and to account for the effects

that pushes and pulls produce.
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The student who knows something about vectors cén readily
learn about forces. The counecting links between the concepts
of "force" and “vector" can be stated as follows:

1. Every Jorce can be represented as a vector. The
direction of the force is the same as the direction
of its representative vector. The magnitude of the
force determines the length of its representing
vector, once a "scale" has been selected.

Example B5a. A red-headed man is standing on top of a hill,
staring into space. He weighs 200 pounds., Represent as a
vector each of the following: '

(8) the downward pull of the earth's gravity on him,
(b) the upward push of the hill on him.

Solution: (a) (o) A
X Y
Scale: 1 inch represents Scale: 1 inch represents
200 pounds 200 pounds

2. Any collection of forces which act on a single body
is equivalent to a single force, called their
resultant, If 8ll the forces are represented as
vectors on the same s8cale, then the vector which
represents the resultant of the forces is the
sum of these vectors.

Example 5b. Represent each of the following forces as a
vector, and find the vector which represents their resultant:
A force Fl of 300 pounds directed to the right, a force Fy
of 400 pounds directed at an angle of 45° with the x-axis
and a force of 500 pounds directed upward.

4

R
o 4
=
R
5
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Solution: ‘graphical) Using the scale 1 inch represents
400 pounds, X represents Fl ’ v represents Fa , 2
represents Fj .

z /]
) -
. .r/ z

F
P
- 5
Y «Aﬁ‘ /://
X
X
-l alin —t

X+ Y+ Z represents the resultant of Fl s F2 R F3 .

Its length is a little less than 5/2 inches; its direction is
about 54° .

3. If F and G are two forces which have the same
direction, then they have 8 numerical ratio and
there is a number r such that r times force F
is equivalent to force G . Moreover if _1«: is the
vector which represents force F , then r-§ is the
vector which represents force G , where r is the
ratio of force G to force F .

Example 5¢. Emily and Elsie are identical twins. They are
sitting on a fence. If T?. represents the total force Emily and
Elsie exert on the fence and if § represents the force the
fence exerts on Emily alone, express

)

() F 4in terms of T .

() @ 1in terms of ¥ .
Solution:

(a) F = -2G .

(p) T = - %F .

41
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A body at rest is said to be in equilibrium., It is a fact
ef physics that if a body is at rest the resultant of all the
forces acting on the body has magnitude zero. (Note: The
converse of this is not true, since the resultant of all the
forces which act on & moving body can also be zer . According
to the laws of physics, if the sum of all the forc.s which act
on a body is zero, then the body must be either at rest or it
must move in a straight 1lin s4th constant speed.)

Exercises 5a

1. A weight is susprended by ropes as shown in the figure.

If the welght weighs 10 pounds, what 1s the force
exerted on the Junction C Dby the rope CB ?

2. A weight of 1,000 pounds 1s suspended from wires as
shown in the figure,

— — HORIZONTAL

SOV
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The distance AB is 20 feet. AC 1is 10 feet, and CB
is 1043 feet. What force does the wire AC exert on the
Junction C ? What force does the wire BC exert on C ?
If all three wires are about equally strong, which wire is
most likely to break? Which wire is least likely to break?

A 5,000 pound weight is suspended as shown in the figure.
Find the tension in each of the ropes CA , CB, and CW .

N %
/ /
/) /
/| | /
/N
7 N 7
/ ‘ 90° g
g \\ 17

5/
g /
g JATAN ¢

A barrel 1s held in place on an inclined plane EF by a
force OF operating parallel to the plane and another
cperating perpendicular to 1t, (See diagram.)

Q

23°

Yw
If the weight of the barrel is 300 pounds, (lﬁwi = 300)
and the plane makes an angle of 23° with the horizontal,
find |OP| and |0Q] . (Hint: Introduce 2 coordinate
system with origin at O and OW as negative y-axis.)

€y
[
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5. A weight is suspended by ropes as shown in the figure. If
the weight welghs 20 pounds, what is the force exerted on
the Jjunction C by the rope CB ? By the rope AC ? If
AC and CB are equally strong, which one is more likely
to break?

— HORIZONTAL

NANNNNNNNNUN

Z
7
/]
/
/|
/
A

6. A 500 pound weight is suspended as shown in the figure.
Find each of the forces exerted on point C

7 Aa

—rd c

HINGE W} 500 16 WEIGHT

7. A 2,000 pound weight is 1ifted at constant speed, as shown
in the diagram. Find each of the forces exerted on point C .

c

2000 Ib WEIGHT

HINGED STRUT

8/ S S S S S

A 30°
S S S
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PROPELLER THRUST
LIFT

~

DRAG FORCE OF GRAVITY

The motion of alrplanes provides another application of
vectors. Some technical terms involved are listed and
illustrated in the figure.

Lift: F:--a force perpendicular to the direction of
motion. This is the "1ifting force" of the wing.

Gravity: F§~-a force directed downward.

Pro;gller thrust: Fﬁg--a forward force in the
direction of motion.

Drag: Fg--a backward force parallel to the motion.
This force is due to wind resistance.

Effective propeller thrust: Féﬁ%"the propeller thrust
minus the drag.

The physical principle we shall use states that a body in
motion will continue to move in a straight line with
constant speed if and only if the resultant of all the
forces acting on the body is zero.

An airplane weighing 6,000 pounds climbs steadily upwards
at an angle of 30° . Find the effective propeller thrust
and the 1ift.

[+
iy

il

Py
Wb



40

9, An airplane weighing 10,000 pounds climbs at an angle of
15° with constant speed. Find the effective propeller
thrust and the 1lift.

10. A motorless glider descends at an angle of  10° with
constant speed. If the glider and occupant together welgh
500 pounds, find the drag and the 1lift.

The term "work'" as the physicists use it also provides an
example of a concept which can be discussed in terms of vectors.,
Consider for instance a tractor pulling a box-car along a track.

—

TRACK

XTI ™,
8

{ DIRECTION OF MOTION]}
— e _— N ———
—_—— ] TRACTOR
Figure ba
The effect of the ftractor's force depends on the angle 6 . It

also involves the force itself and the displacement produced.
The term "work," as used in physiecs, is given in this case by .
3? -5 s, Where F 1is the force-vector of the tractor and where

—

S 4is the displacement of the box-car.

More generally, if a force F acts on a body and produces
a displacement S while it acts, then the work done by the force
is defined to be F - 8 , where ¥ 1s the vector which represents
the force and where S is the vector which represents the dis-
placement.

Example Se. If the tractor of Figure 5a exerts a force of

1,000 pounds at an angle of 30° to the track, how much work
does the tractor do in moving a string of cars 2,000 feet?

4

} &t -
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Solution: Evaluate the expression |[F] |S| cos & where

[F| = 1,000 pounds, |3| = 2,000 feet, cos & = .866 . The vslue
of this product is 1,732,000 foct pounds.

1.

Exercises 5b

A sled is pulled a distance of d feet by a force of p
pounds which makes an angle of e with the horizontal.
Find the work done if

(a) @ = 10 feet, p = 10 pounds, & = 10° .
(b) d = 100 feet, p = 10 pounds, © = 20° .
(¢) d = 1,000 feet, p = 10 pounds, & = 30° .

How far can the sled be dragged if the number of available
foot pounds of work is 1,000 and if

(d) p = 10 pounds, o = 10° .
(e) p = 100 pounds, & = 20° .
(f) p = 100 pounds, © = 0° .
(g) p = 100 pounds, e = 89° ,

The drawing shows a smooth incline d feet long which
makes an angle © with the horizontal.

How much work is done in moving an ob ect weighing p pounds

from R to S 4if
(a) d = 10 feet, p = 10 pounds, 6 = 10° .
(b) d = 100 feet, p = 10 pounds, € = 20° .,

{¢) d = 100 feet, p = 10 pounds, © = 30° .
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How far can the weight be moved if the number of available
foot pounds is 1,000 and if

(d) p = 10 pourds, & = 10° .
(¢) p = 10 pounds, & = 20° .
(f) p = 100 pounds, e = 1° ,

(g8) p = 100 pounds, @ = 89° .,

Velocity is another concept of physics that can be
represented by means of vectors. In ordinary language the words
"speed" and "velocity" are used as synonyms. In physics the word
"speed' refers to the actual time rate of change of distance (the
kind of information supplied by an automobile speedometer), and
"velocity" refers to the vector whose direction is the direction
of the motion and whose length represents the speed on some given
scale. When velocities are represented by vectors, the lengths
of these vectors give the corresponding speeds.

Figure 5b shows vectors which represent some of the
velocities of a body moving around a circle with constant speed.

-l

%

\ X« V]« 1Z] = W]
Zz

Figure 5b

It is easy to imagine situations in which velocities are
compounded out of other velocities. For instance, a man walking
across the deck of a moving boat has a velocity relative to the
water which is compounded out of his velocity relative to the
boat and out of the boat's velocity relative to the water, It is
a& principie of physics that the vector which represents such a
compound velocity 1s the sum of the vectors which represent the
individual velocities. ¢

[
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Example 2f. A ship sails east at 20.0 miles per hour. A
man walks across its deck toward the south at 4.0 miles per
hour. What is the man's velocity relative to the water?

Solution: In the figure, X
represents the ship's velocity N
relative to the water, ¥ X 200
represents the man's velocity ~ V4.0
relative to the ship. Conse-
quently, X+¥ represents
the man's velocity relative to
the water. 1Its length is

4/20.02 + 4.0% = 20.4
and its direction is 22° south of east.

Exercises 5¢

l. Ariver 1 mile wide flows at the
rate of 3 miles per hour. A man B A
TOWS across the river, starting at
A and aiming his boat toward B,
the nearest point on the opposite
shore as shown in the diagram. If
it tock 30 minutes for him to make
the trip, how far did he row?

|~

2. A river is '% mile wide and flows at the rate of 4 miles
per hour. A man rows across the river in 25 minutes,
landing 1.3 miles farther downstream on the opposite
shore. How far did he row? In what direction did he head?

3. A river one mile wide flows at a rate of % miles per hour.
A man wishes to row in a straight line to a point on the
opposite shore two miles upstream. How fast must he row
in order to make the ¢rip in one hour?

4, A body starts at (0,0) at the time ¢t = O . It moves with
constant velocity, and 20 seconds later it is at the point
(40,30) . Find its speed and its velocity, if one unit of
length of vector corresponds to 100 feet per second.

ERIC 46

4
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A body moves with constant velocity which is represented by
the vector V = 101 + 10? . If the body is at the point
(0,1) at time t = 2 , where will it be wh:n t = 15 ?

The scale is: One unit of length of vector corresponds to
10 miles per hour; the time ¢ 1s measured in hours.

Ship A starts from point (2,4%) at time t = Q0 , Its
velocity is constant, and represented by the vector
V,=%1-37. snip B starts at the point (-1,-1) at
time ¢t =1 . Its veleoclity is also constant, and is
represented by the vector '?5 = TI + 3‘. Will the ships
collide? (Assume that a consistent scale has been used in
setting up the vector representation.)

Ship A starts at point (2,7) at time t =0 . Its
(constant) velocity is represented by the vector

‘\?a =31 - 2. ship B starts at point (-1,-1) at time
t =1, Its (constant) velocity i1s represented by the
vector ¥, = 51 . Will the ships collide?

A river is ‘% mile wide and flows at the rate of 4 miles
per hour. A man can row at the rate of 3 miles per hour.
If he starts from point A and rows to the oprosite shore,
what is the farthest point upstream at which he can reach
the opposite shore? In what direction should he head?

Exercises 53
Show each of the following graphically:

(a) 31 + 87 + 5k . (£) 21 - 27 .

(b) 33 + 3% . (g) 7k .

{c) 41T + 47 . (h) 53 .

(@) 51+ 7. (1) 71.

(e) 5T +57 +k. (3) 8T + 87 + 3% .

Find A - B, if:

(a) A=3T+2T+4k;B=21+7+ 2k.
(b) R=3T +47-2k; B=21+ 27+ k.
(c) A =3T+3k; B=u47.
(d) A =4T +47 ;8B =7k .
() A=4T+23k; B=>51.

hiii gt
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Find the cosine of the angle between vectors A and ¥ in
each part of Problem 2.

Find the cosine of the angle between the vectors A and B

if R =31 +27-% and B« 41 - 37T+ 6K .

A lighting fixture i1s suspended as shown:

Perspective view

View from to
P Vertical view

. Side view ’
120 (the angle is el
shown in its i
120’ true shape;
has a measure /

(20" ‘ of 60° . ,/

|
!
v
The fixture weighs 15 pounds. Find the tension in each
of the supporting cables,

An airplane is climbing at an angle of 30° . Its ¢limbing
speed is 100 m.p.h. Although a wind is blowing from west
to east with a velocity of 30 m.p.h., the pilot wishes to
climb while heading due north. What is the ground speed of
the airplane?

Suppose that in Problem 6 the pilot climbs at an angle of
30° , but does not insist on heading north. What is the
fastest ground speed that he can achieve? Which way should
he head to achieve this speed? What is the least ground
speed that he can achieve? Which way should he head to
achieve this?

Prove that
a{x - d) + b(y -e) +e(z -f) =0,

is the equation of a plane through the point Q(d,e,f)
with the normal vector

N =al + b7+ ck .

o1



G. Find a vector normel to the plane
X « 3y + 5z = 12 .
10. Find the distance from the point (0,0,0) to the plane
X+ 12y -z =1 .
11. Find the distance from the plane

X+ 2y -3z =1
to the origin.

6. Vectors as a Formal Mathematical System.

In our discussion of forces and velocities by means of
vectors we made a few assumptions which we did not Justify. We
applied vector methods to the sclution of force and velocity
problems in a fashion which turns out to be correct but which we
have not backed up with a convineing argument. Our thinking was
something 1like this. 'Some of the rules that forces obey are
very much like the rules that vectors obey. Therefore we can
talk abou. forces as though they were vectors." This is not
réally a sound argument, and if it were trusted in all cases it
could lead to chaos., For instance, some of the rules that real
numbers obey are the rules that integers obey, and it is not the
case that real numbers can be regarded as integers.

Nevertheless, it really was correct to treat forces as
vectors and we now explore a point of view which gives convincing
evidence for this statement. The key fact in this examination is
that every mathematical system which obeys certain of the laws
which vectors obey must be essentially the same as the system of
vectors itself.

We now formulate three goals:
1. To 1list the rules in question.

2. To give a precise specification of what we mean by saying
that a mathematical system is "essentislly the same” as a
system of vectors.
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3. To prove that systems which obey the stated rules are
essentially the same as the system of vectors.

'
" I. We state certain rules which vectors have been shown to

obey, We have a set S, two operations ) , (O, for which,
forall o , B8 , Y , in S and for all real numbers r, s

(1) e P B isin s.

(3 e @B=5@ e

) «a@P(s@r)=(c@®@8)@ .

(4) There is & zero element ¢ in S such that
a(@® ¢ = «

(5} Each o has an additive inverse - ¢ for which

a@(-a) = 9

6) r Ooaisin s.

(7 2 OO e)u(rs) © o,

(8) (r+8)Qea=(r Qe) @ (s O ).

9 rOQ(a@®@a)=O )@ r Op).
(10) 1 ODa= o,

(11) There are two members 8 and ¥ of S such that
each member - ¢ of S has a unique representation.

a=@OB3)E® G O7).

II. We have already shown that vectors satisfy such rules,
where S 1s interpreted as the set of vectors, (¥ 1s inter-
preted as ordinary + for vectors and where () 1s interpreted
&s scalar multiplication. We take it as given (by physicists
presumably) that forces also satisfy these rules, where S 1is
the set of forces, e¢ (¥) 8 means the resultant of e and 8
and (O means scalar multiplication. We are to show that
forces are essentially the same as vectors. What do we mean by
"essentially the same?" We mean that the system of forces is
isomorphic to the system of vectors. Wwhat do we mean by
"isomorphic”? That there is a one-to-one correspondence between

50
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the set of forces and the set of vectors such that, i1f force «a
corresponds to vector 2 and if force B corresponds to vector
¥, then « (® B corresponds to vector A+ B and force

r () a corresponds to vector rR .

III. We now state and prove the promised theorem.

THEOREM. Any system S which satisfies Rules 1 - 11 1is
isomorphic to the system of vectors in a plane.

Proof: We first set up a one-to-one correspondence between
the members of S and the vectors. For each o of § we
invoke Item 11 to write

a=@aQv) ® Ow .

The pair (a,b) which figures in this expression determines a
unique vector A , namely [a,b] , which we pair with a . This
process assigns to each a« of § a vector A as its image. We
must show thai if [a,b] 1is the image of « and if [e¢,d] 1is
the image of B8 , then [a + ¢ , b + d] 4is the image of

@ + B and that [ra,rdb] 1s the image of r () o . To

prove the first, write
a=(a O y® (20OwW

B=(c On® alw .

(18

.‘.g

Therefore o« (D B = ((aQyv) @ GO W) @ (O OO

which equals using Rules 2 and 3,

(@O ® COM O EEOW ® @OW .
This in turn equals
((a+c)Oy) ® (v +a)Ow

by virtue of Rule 8. We see then that our one-to-one corre-
spondence assigns [a+c¢ , b+ d] to o + 8 .
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We rniow examine r O @ ., We write

r Qa=r Qv ® GO w)

which by Rule G can be written as

rOQ @O OrOEOW.

According to Rule 7, this last equals

((ra) O ¥v) ® (UrdD) O W),
whence the image of r () e 4s indeed [ra,rd] .

This completes our pr-of. Notice that we did not use all
the rules given. They are in fact redundant. If the last rule
is left out, the remaining set of rules is not redundant, and is
the set of axioms which defines a vector space. The Rules 1 - 11
are axioms for a more specisl matrhematical system--a two-
dimensional vector space.

We have shown that every system which satisfies Rules 1 - 11
is isomorphic to our system of vectors. We have not shown that
the system of forces satisfies these rules. We take the
physicist's word for this. We have not shown that to be
"isomorphic" really means to be "essentially the same."

Exercises 6

1. Let S be the system of complex numbers. Does S satisfy
Rules 1 - 11 if (¥) 1s interpreted as ordinary addition
of complex numbers and () as ordinary multiplication of
& real number by a complex number? (Hint: In checking
Rule 11, try 1 for y and 1 for w ) .

2. Let S be the set of all ordered pairs (a,b) of real
numbers, let () be defined by ’(a,b) ® (e,q)
=(a+c,b+d), and let (9 bve defined by

r© (a,0) = (B, ).

Which of the Rules 1 - 11 does this system obey?

L)
Tt




3. Let S be the set of all ordered pairs (a,b) of real
numbers, let (¥) be defined by

(a,0) @ (c,4) = (242, 244y,

and let (©) be defined by
r () (a,b) = (ra,rb) .
Which of the Rules 1 - 11 does this system obey?

.
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